. 2005 Oct 6;6(2):E298–E310. doi: 10.1208/pt060240
Rajiv Kumar
1, Om Prakash Katare
1,✉
PMCID: PMC2750543PMID: 16353989
Abstract
The purpose of this review is to give an insight into the considerable potential of lecithin organogels (LOs) in the applications meant for topical drug delivery. LOs are clear, thermodynamically stable, viscoelastic, and biocompatible jelly-like phases, chiefly composed of hydrated phospholipids and appropriate organic liquid. These systems are currently of interest to the pharmaceutical scientist because of their structural and functional benefits. Several therapeutic agents have been formulated as LOs for their facilitated transport through topical route (for dermal or transdermal effect), with some very encouraging results. The improved topical drug delivery has mainly been attributed to the biphasic drug solubility, the desired drug partitioning, and the modification of skin barrier function by the organogel components. Being thermodynamically stable, LOs are prepared by spontaneous emulsification and therefore posses prolonged shelf life. The utility of this novel matrix as a topical vehicle has further increased owing to its very low skin irritancy potential. Varied aspects of LOs viz formation, composition, phase behavior, and characterization have been elaborated, including a general discussion on the developmental background. Besides a comprehensive update on the topical applications of lecithin organogels, the review also includes a detailed account on the mechanistics of organogelling.
Keywords: organogel, lecithin, phospholipids, pluronic, topical delivery
Full Text
The Full Text of this article is available as a PDF (255.5 KB).
References
- 1.Barr M. Percutaneous absorption. J Pharm Sci. 1962;61:395–409. doi: 10.1002/jps.2600510502. [DOI] [Google Scholar]
- 2.Hadgraft J, Guy RH. Transdermal Drug Delivery: Development Issues and Research Initiatives. New York, NY: Marcel Dekker; 1989. [Google Scholar]
- 3.Asmussen B. Transdermal therapeutic systems—actual state and future developments. Methods Find Exp Clin Pharmacol. 1991;13:343–351. [PubMed] [Google Scholar]
- 4.Hadgraft J. Recent developments in topical and transdermal delivery. Eur J Drug Metab Pharmacokinet. 1996;21:165–173. doi: 10.1007/BF03190266. [DOI] [PubMed] [Google Scholar]
- 5.Cevc G. Drug delivery across the skin. Expert Opin Investig Drugs. 1997;6:1887–1937. doi: 10.1517/13543784.6.12.1887. [DOI] [PubMed] [Google Scholar]
- 6.Hadgraft J. Passive enhancement strategies in topical and transdermal drug delivery. Int J Pharm. 1999;184:1–6. doi: 10.1016/S0378-5173(99)00095-2. [DOI] [PubMed] [Google Scholar]
- 7.Mitchell DJ, Ninham BW. Micelles, vesicles and microemulsions. J Chem Soc Faraday Trans II. 1981;77:601–629. doi: 10.1039/f29817700601. [DOI] [Google Scholar]
- 8.Cevc G, Paltauf E. Phospholipid Characterization, Metabolism and Novel Biological Applications. Champaign, IL: AOCS Press; 1995. [Google Scholar]
- 9.Attwood D, Florence AT. Surfactant, Systems: Their Chemistry, Pharmacy and Biology. London, UK: Chapman and Hall; 1983. [Google Scholar]
- 10.Kreuter J. Colloidal Drug Delivery Systems. New York, NY: Marcel Dekker; 1994. [Google Scholar]
- 11.Lawrence MJ. Surfactant systems: microemulsions and vesicles as vehicles for drug delivery. Eur J Drug Metab Pharmacokinet. 1994;19:257–269. doi: 10.1007/BF03188929. [DOI] [PubMed] [Google Scholar]
- 12.Schwarz G. Basic kinetics of binding and incorporation with supramolecular aggregates. Biophys Chem. 1987;26:163–169. doi: 10.1016/0301-4622(87)80019-4. [DOI] [PubMed] [Google Scholar]
- 13.Lehn MJ. Supramolecular chemistry: scope and perspectives (Molecules, Supramolecules and Molecular devices) Angew Chem Int Ed Engl. 1988;27:89–112. doi: 10.1002/anie.198800891. [DOI] [Google Scholar]
- 14.Zarif L. Elongated supramolecular assemblies in drug delivery. J Control Release. 2002;81:7–23. doi: 10.1016/S0168-3659(02)00010-X. [DOI] [PubMed] [Google Scholar]
- 15.Schmid MH, Korting HC. Liposomes: a drug carrier system for topical treatment in dermatology. Crit Rev Ther Drug Carrier Syst. 1994;11:97–118. [PubMed] [Google Scholar]
- 16.Abrol S, Trehan A, Katare OP. Formulation, characterization, and in vitro evaluation of silymarin loaded lipid microspheres. Drug Deliv. 2004;11:185–191. doi: 10.1080/10717540490433958. [DOI] [PubMed] [Google Scholar]
- 17.De Miguel I, Imbertie L, Rieumajou V, Major M, Kravtzoff R, Betbeder D. Proofs of the structure of lipid coated nanoparticles (SMBV) used as drug carriers. Pharm Res. 2000;17:817–824. doi: 10.1023/A:1007504124603. [DOI] [PubMed] [Google Scholar]
- 18.Donatella P, Cinzia AV, Steven N, Giovanni P, Massimo F. Lecithin microemulsions for the topical administration of ketoprofen: percutaneous adsorption through human skin and in vivo human skin tolerability. Int J Pharm. 2002;244:21–31. doi: 10.1016/S0378-5173(02)00295-8. [DOI] [PubMed] [Google Scholar]
- 19.Stamatis H, Xenakis A. Biocatalysts using microemulsion-based polymer gels containing lipase. J Mol Catal. B Enzym. 1999;6:399–406. doi: 10.1016/S1381-1177(98)00142-8. [DOI] [Google Scholar]
- 20.Scartazzini R, Luisi PL. Organogels from lecithins. J Phys Chem. 1988;92:829–833. doi: 10.1021/j100314a047. [DOI] [Google Scholar]
- 21.Schurtenberger P, Scartazzini R, Magid LJ, Leser ME, Luisi PL. Structural and dynamic properties of polymer-like reverse micelles. J Phys Chem. 1990;94:3695–3701. doi: 10.1021/j100372a062. [DOI] [Google Scholar]
- 22.Capitani D, Segre AL, Dreher F, Walde P, Luisi PL. Multinuclear NMR investigation of phosphatidylcholine organogels. J Phys Chem. 1996;100:15211–15217. doi: 10.1021/jp960811i. [DOI] [Google Scholar]
- 23.Walde P, Giuliani AM, Boicelli CA, Luisi PL. Phospholipid-based reverse micelles. Chem Phys Lipids. 1990;53:265–288. doi: 10.1016/0009-3084(90)90026-N. [DOI] [PubMed] [Google Scholar]
- 24.Shumilina EV, Khromova Y, Shchipunov YA. A study of the structure of lecithin organic gels by Fourier-transform IR spectroscopy. Zhurnal Fizicheskoi Khimii. 2000;74:1210–1219. [Google Scholar]
- 25.Cirkel P, Koper GJM. Proceedings of Conference on Colloid Chemistry: Memoriam Aladar Buzagh. Budapest, Hungary: Hungarian Chemical Society; 1996. The structure of lecithin organogels; pp. 36–39. [Google Scholar]
- 26.Schipunov YA. Lecithin organogel: a micellar system with unique properties. Colloids Surf A Physicochemical and Engineering Aspects. 2001;183–185:541–554. doi: 10.1016/S0927-7757(01)00511-8. [DOI] [Google Scholar]
- 27.Shchipunov YA. Self-organizing structures of lecithin. Usp Khim. 1997;66:328–352. [Google Scholar]
- 28.Mezzasalma SA, Koper GJM, Shchipunov YA. Lecithin organogel as a binary blend of monodisperse polymer-like micelles. Langmuir. 2000;16:10564–10565. doi: 10.1021/la000860t. [DOI] [Google Scholar]
- 29.Shchipunov YA. Lecithin organogels: rheological properties of polymer-like micelles formed in the presence of water. Colloid J. 1995;57:556–560. [Google Scholar]
- 30.Shchipunov YA, Shumilina EV. Lecithin bridging by hydrogen bonds in the organogel. In:Materials Science & Engineering C 3. 1995;43–50.
- 31.Shchipunov YA, Duerrschmidt T, Hoffmann H. End-to-end fusion of polymer-like micelles in the lecithin organogel under the action of an electric field. Langmuir. 2000;16:297–299. doi: 10.1021/la990810s. [DOI] [Google Scholar]
- 32.Willimann H, Luisi PL. Lecithin organogels as matrix for transdermal transport of drugs. Biochem Biophys Res Commun. 1991;177:897–900. doi: 10.1016/0006-291X(91)90622-E. [DOI] [PubMed] [Google Scholar]
- 33.Willimann H, Walde P, Luisi PL, Gazzaniga A, Stroppolo F. Lecithin organogels as matrix for transdermal transport of drugs. J Pharm Sci. 1992;81:871–874. doi: 10.1002/jps.2600810906. [DOI] [PubMed] [Google Scholar]
- 34.Bhatnagar S, Vyas SP. Organogel-based systems for transdermal delivery of propranolol. J Microencapsul. 1994;2:431–438. doi: 10.3109/02652049409034260. [DOI] [PubMed] [Google Scholar]
- 35.Dreher F, Walde P, Walther P, Wehrli E. Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. J Control Release. 1997;45:131–140. doi: 10.1016/S0168-3659(96)01559-3. [DOI] [Google Scholar]
- 36.Dreher F, Walde P, Luisi PL, Elsner P. Human skin irritation of a soybean lecithin microemulsion gel and of liposomes. In:Proceedings Int Symp Control Rel Bioact Mater 22 Langmuir. 1995;640–641.
- 37.Dreher F, Walde P, Luisi PL, Elsner P. Human skin irritation studies of a lecithin microemulsion gel and of liposomes. Skin Pharmacol. 1996;9:124–129. doi: 10.1159/000211408. [DOI] [PubMed] [Google Scholar]
- 38.Hanahan DJ. A Guide to Phospholipid Chemistry. New York, NY: Oxford University Press; 1997. [Google Scholar]
- 39.Wendel A. Kirk-Othmer Encyclopedia of Chemical Technology. New York, NY: John Wiley & Sons; 1995. pp. 192–193. [Google Scholar]
- 40.Schneider M. Industrial production of phospholipids-lecithin processing. Lipid Technology. 1997;9:109–116. [Google Scholar]
- 41.Shumilina EV, Khromova Y, Shchipunov YA. Lecithin, organogels: the effect of phosphatidylethanolamine additives. Colloid J. 1997;59:514–518. [Google Scholar]
- 42.Moore J. Final report on the safety assessment of octyl palmitate, cetyl palmitate and isopropyl palmitate. J Am Coll Toxicol. 1982;1:13–35. [Google Scholar]
- 43.Sato K, Sugibayashi K, Morimoto Y. Effect and mode of action of aliphatic esters on the in-vitro skin permeation of micorandil. Int J Pharm. 1988;43:31–40. doi: 10.1016/0378-5173(88)90055-5. [DOI] [Google Scholar]
- 44.Arellano A, Santoyo S, Martin C, Ygartua P. Influence of propylene glycol and isopropyl myristate on in vitro percutaneous penetration of diclofenac sodium from carbopol gel. Eur J Pharm Sci. 1999;7:129–135. doi: 10.1016/S0928-0987(98)00010-4. [DOI] [PubMed] [Google Scholar]
- 45.Parsaee S, Sarbolouki MN, Parnianpour M. In vitro release of diclofenac diethylammonium from lipid-based formulations. Int J Pharm. 2002;241:185–190. doi: 10.1016/S0378-5173(02)00238-7. [DOI] [PubMed] [Google Scholar]
- 46.Shchipunov YA, Shumilina EV. Lecithin organogels: role of polar solvent and nature of intermolecular interactions. Colloid J. 1996;58:117–125. [Google Scholar]
- 47.Shchipunov YA, Hoffmann H. Lecithin organogels with polar additives: rheological studies. Colloid J. 1998;60:794–799. [Google Scholar]
- 48.Berti JJ, Lipskys JJ. Transcutaneous drug delivery: a practical review. Mayo Clin Proc. 1995;70:581–586. doi: 10.4065/70.6.581. [DOI] [PubMed] [Google Scholar]
- 49.Burnham R, Gregg R, Healy P, Steadward R. The effectiveness of topical diclofenac for lateral epicondylitis. Clin J Sport Med. 1998;8:78–81. doi: 10.1097/00042752-199804000-00002. [DOI] [PubMed] [Google Scholar]
- 50.Giordano J, Daleo C, Sacks SM. Topical ondansetron attanuates nociceptive and inflammatory effects of intradermal capsaicin in humans. Eur J Pharmacol. 1998;354:R13–R14. doi: 10.1016/S0014-2999(98)00492-0. [DOI] [PubMed] [Google Scholar]
- 51.Crandall WT, inventor.Topical moisturizing composition and method. US Patent 6 316 428. November 13, 2001.
- 52.Collett JH. Poloxamer. In: Popli H, Kibbe AH, editors. Handbook of Pharmaceutical Excipients. 3rd ed. London, UK: Pharmaceutical Press; 2000. pp. 386–388. [Google Scholar]
- 53.Shchipunov YA, Schmiedel P. Phase behavior of lecithin at the oil/water interface. Langmuir. 1996;12:6443–6445. doi: 10.1021/la960082y. [DOI] [Google Scholar]
- 54.Shchipunov YA, Schmiedel P. Electrorheological phenomena in lecithin-decane-water mixtures. J Colloid Interface Sci. 1996;179:201–206. doi: 10.1006/jcis.1996.0203. [DOI] [Google Scholar]
- 55.Shchipunov YA, Hoffmann H. Growth, branching and local ordering of lecithin polymer-like micelles. Langmuir. 1998;14:6350–6360. doi: 10.1021/la980469w. [DOI] [Google Scholar]
- 56.Shchipunov YA, Shumilina EV, Ulbricht W, Hoffmann H. The branching of reversed polymer-like micelles of lecithin by sugar-containing surfactants. J Colloid Interface Sci. 1999;211:81–88. doi: 10.1006/jcis.1998.5927. [DOI] [PubMed] [Google Scholar]
- 57.Shchipunov YA, Durrschmidt T, Hoffmann H. Electrorheological effects in lecithin organogels with water and glycerol. J Colloid Interface Sci. 1999;212:390–401. doi: 10.1006/jcis.1998.6046. [DOI] [PubMed] [Google Scholar]
- 58.Shchipunov YA, Shumilina EV, Hoffmann H. Lecithin organogels with alkylglucosides. J Colloid Interface Sci. 1998;199:218–221. doi: 10.1006/jcis.1997.5313. [DOI] [Google Scholar]
- 59.Shchipunov YA, Shumilina EV, Hoffmann H. Lecithin organogels with n-alkyl-D-glycosides and n-alkyl-D-lactobionamide. Colloid Polym Sci. 1998;276:368–372. doi: 10.1007/s003960050253. [DOI] [Google Scholar]
- 60.Shchipunov YA, Hoffmann H. Thinning and thickening effects induced by shearing in lecithin solutions of polymer-like micelles. Rheologica Acta. 2000;39:542–553. doi: 10.1007/s003970000097. [DOI] [Google Scholar]
- 61.Voit AV, Shchipunov YA. Dynamics of polymer-like lecithin micelles—rheological measurements. Colloid J. 2000;62:424–430. [Google Scholar]
- 62.Shchipunov YA, Mezzasalma SA, Koper GJM, Hoffmann H. Lecithin organogel with new rheological and scaling behavior. J Phys Chem B. 2001;105:10484–10488. doi: 10.1021/jp010874n. [DOI] [Google Scholar]
- 63.Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans II. 1976;72:1525–1568. doi: 10.1039/f29767201525. [DOI] [Google Scholar]
- 64.Seddon JM. Structure of the inverted hexagonal (H11) phase and non-lamellar phase transitions of lipids. Biochim Biophys Acta. 1990;1031:1–69. doi: 10.1016/0304-4157(90)90002-t. [DOI] [PubMed] [Google Scholar]
- 65.Suzuki M, Nakajima Y, Yumoto M, Kimura M, Shirai H, Hanabusa K. In situ organogelation at room temperature: direct synthesis of gelators in organic solvents. Org Biomol Chem. 2004;2:1155–1159. doi: 10.1039/b401683a. [DOI] [PubMed] [Google Scholar]
- 66.Schurtenberger P, Peng Q, Leser ME, Luisi PL. Structure and phase behaviour of lecithin-based microemulsions: a study of chain length dependence. J Colloid Interface Sci. 1993;156:43–51. doi: 10.1006/jcis.1993.1078. [DOI] [Google Scholar]
- 67.Shioi A, Harada M, Tanabe M. Static light scattering from oil-rich microemulsions containing polydispersed cylindrical aggregates in sodium bis(2-ethylhexyl) phosphate system. J Phys Chem. 1995;99:4750–4756. doi: 10.1021/j100013a052. [DOI] [Google Scholar]
- 68.Aboofazeli R, Barlow DJ, Lawrence MJ. Particle size analysis of concentrated phospholipid microemulsions. I. Total intensity light scattering. AAPS PharmSci. 2000;2:E13–E13. doi: 10.1208/ps020213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Zemb TN, Barnes IS, Derian PJ, Ninham BW. Scattering as a critical test of microemulsion structural models. Prog Colloid Polym Sci. 1990;81:20–29. [Google Scholar]
- 70.Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev. 1997;97:3133–3159. doi: 10.1021/cr9700282. [DOI] [PubMed] [Google Scholar]
- 71.Simmons BA, Taylor CE, Landis FA, McPherson GL, Schwartz DK, Moore R. Microstructure determination of AOT+Phenol organogels utilizing small-angle X-ray scattering and atomic force microscopy. J Am Chem Soc. 2001;123:2414–2421. doi: 10.1021/ja0037926. [DOI] [PubMed] [Google Scholar]
- 72.Gronwald O, Snip E, Shinkai S. Gelators for organic liquids based on self-assembly: a new facet of supramolecular and combinatorial chemistry. Curr Opinion Colloid Interface Sci. 2002;7:148–156. doi: 10.1016/S1359-0294(02)00016-X. [DOI] [Google Scholar]
- 73.Abdallah DJ, Sirchio SA, Weiss RG. Hexatriacontane organogels. The first determination of the conformation and molecular packing of a low-molecular mass organogelator in its gelled state. Langmuir. 2000;16:7558–7561. doi: 10.1021/la000730k. [DOI] [Google Scholar]
- 74.van Esch JH, Feringa BL. New functional materials based on self-assembling organogels: from serendipity towards design. Angew Chem Int Ed Engl. 2000;39:2263–2266. doi: 10.1002/1521-3773(20000703)39:13<2263::AID-ANIE2263>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
- 75.McAllister K, Sazani P, Adam M, et al. Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. J Am Chem Soc. 2002;124:15198–15207. doi: 10.1021/ja027759q. [DOI] [PubMed] [Google Scholar]
- 76.Schurtenberger P, Scartazzini R, Luisi PL. Viscoelastic properties of polymerlike reverse micelles. Rheologica Acta. 1989;28:372–381. doi: 10.1007/BF01336804. [DOI] [Google Scholar]
- 77.Jibry N, Heenan RK, Murdan S. Amphiphilogels for drug delivery: formulation and characterization. Pharm Res. 2004;21:1852–1861. doi: 10.1023/B:PHAM.0000045239.22049.70. [DOI] [PubMed] [Google Scholar]
- 78.Terech P. Kinetics of aggregation in steroid derivative/cyclohexane gelifying system. J Colloid Interface Sci. 1985;107:244–255. doi: 10.1016/0021-9797(85)90168-7. [DOI] [Google Scholar]
- 79.Couffin-Hoarau A-C, Motulsky A, Delmas P, Leroux J-C. In situ-forming pharmaceutical organogels based on the self-assembly of L-Alanine derivatives. Pharm Res. 2004;21:454–457. doi: 10.1023/B:PHAM.0000019299.01265.05. [DOI] [PubMed] [Google Scholar]
- 80.Nastruzzi C, Gambari R. Antitumor activity of (trans)dermally delivered aromatic tetra-amidines. J Control Release. 1994;29:53–62. doi: 10.1016/0168-3659(94)90121-X. [DOI] [Google Scholar]
- 81.Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45:89–121. doi: 10.1016/S0169-409X(00)00103-4. [DOI] [PubMed] [Google Scholar]
- 82.Charles L, Matthew D, inventors.Cardiac glycosides for treating muscle pain and spasm. US patent appl publ 20030229029. December 11, 2003.
- 83.Friedman M, inventor,Treatment of bruxism. US patent 6 632 843. October 14, 2003.
- 84.Crandall WT, inventor.Method for topical treatment of scars with protein kinase C inhibitors. US patent 6 306 383. October 23, 2001.
- 85.Crandall WT, inventor,Method for topical treatment of carpal tunnel syndrome. US patent appl publ 20020164389. November 7, 2002.
- 86.Padilla M, Clark GT, Merill RL. Topical medications for orofacial pain: a review. J Am Dent Assoc. 2000;131:184–195. doi: 10.14219/jada.archive.2000.0146. [DOI] [PubMed] [Google Scholar]
- 87.Ford PR, inventor.Topical pain relief composition and carrier. US patent appl publ 20020028789. March 7, 2002.
- 88.Archer HK, Pettit MS, inventors. Analgesic and antiphlogistic compositions and therapeutic wrap for topical delivery. PCT Int Appl WO2000045796. February 4, 2000.
- 89.Flores JA, Crowley KL, inventors.Process for the preparation of ketamine ointment. US patent 5 817 699. October 6, 1998.
- 90.Crandall WT, inventor.Composition and method for topical treatment of androgenic alopecia. US patent appl publ 20030049336. March 13, 2003.
- 91.Crandall WT, inventor.Transdermal transport of molecules. PCT Int Appl WO9803641. January 29, 1998.
- 92.Grace D, Rogers J, Skeith K, Anderson K. Topical diclofenac versus placebo: a double blind, randomized, clinical trial in patients with osteoarthritis of the knee. J Rheumatol. 1999;26:2659–2663. [PubMed] [Google Scholar]
- 93.Shippen E. Progesterone organogel for premenstrual dysphoric disorder. J Am Acad Child Adolesc Psychiatry. 2001;40:262–263. doi: 10.1097/00004583-200103000-00002. [DOI] [PubMed] [Google Scholar]
- 94.Kryger A, inventor. Topical testosterone formulations. PCT Int Appl WO2002055020. July 18, 2002.
- 95.Ciribassi JL, Luescher A, Pasloske KS, Robertson-Plouch C, Zimmerman A, Kaloostian-Whittymore L. Comparative bioavailability of fluoxetine after transdermal and oral administration to healthy cats. Am J Vet Res. 2003;64:994–998. doi: 10.2460/ajvr.2003.64.994. [DOI] [PubMed] [Google Scholar]
- 96.Aboofazeli RZ, Zia H, Needham TE. Transdermal delivery of nicardipine: an approach to in vitro permeation enhancement. Drug Deliv. 2002;9:239–247. doi: 10.1080/10717540260397855. [DOI] [PubMed] [Google Scholar]
- 97.Hoffman SB, Yoder AR, Trepanier LA. Biovailability of transdermal methimazole in a pluronic lecithin organogel (PLO) in healthy cats. J Vet Pharmacol Ther. 2002;25:189–193. doi: 10.1046/j.1365-2885.2002.00405.x. [DOI] [PubMed] [Google Scholar]
- 98.Bonina FP, Montenegro L, Scrofani N, et al. Effects of phospholipids based formulations on in vitro and in vivo percutaneous absorption of methyl nicotinate. J Control Release. 1995;34:53–63. doi: 10.1016/0168-3659(94)00125-E. [DOI] [Google Scholar]
- 99.Agrawal GP, Juneja M, Agrawal S, Jain SK, Pancholi SS. Preparation and characterization of reverse micelle based organogels of piroxicam. Pharmazie. 2004;59:191–193. [PubMed] [Google Scholar]
- 100.Cadden B. Pharmaceutical compounding in pain medicine.NEPA Newsletter. 2000. Available at: http://www.ampainsoc.org/societies/nepa/newsl_winter00.htm. Accessed: 26 July, 2004
- 101.Stafford Pharmacy and Home Healthcare. Information on natural hormone replacement therapy. 2003. Available at: http://www.stafford-pharmacy.com/NHRT.htm. Accessed: 26 July, 2004
- 102.Maxima Pharmaceuticals Inc. DiffusiMax and DiffusiMax Kit [Product Manual]. 2002. Edmonton, Canada: Maxima Pharmaceuticals Inc. Available at: http://www.maximapharmaceuticals.com/maximal/pdf/WebReady_En_CM_052003.pdf. Accessed: 26 July, 2004
- 103.J. A. R. Pharmaceuticals Limited. Phlojel and Phlojel Ultra. 2003. Edmonton, Canada: J.A.R. Pharmaceuticals Ltd. Available at: http://www.phlojel.com. Accessed: 26 July, 2004
- 104.Drugs-r-us.org. Speciality treatments. 2004. Available at: http://www.drugs-r-us.org/treatments.html. Accessed: 26 July, 2004
- 105.Reed’s RX Compounding Pharmacy Web site. Transdermal gels. 2004. Available at: http://www.Reedsrx.com/compounding/gel.htm. Accessed: 26 July, 2004.